Multi-element superconducting nanowire single photon detectors
نویسنده
چکیده
Single-photon-detector arrays can provide unparalleled performance and detailed information in applications that require precise timing and single photon sensitivity. Such arrays have been demonstrated using a number of single-photon-detector technologies, but the high performance of superconducting nanowire single photon detectors (SNSPDs) and the unavoidable overhead of cryogenic cooling make SNSPDs particularly likely to be used in applications that require detectors with the highest performance available. These applications are also the most likely to benefit from and fully utilize the large amount of information and performance advantages provided by a single-photon-detector array. Although the performance advantages of individual superconducting nanowire single photon detectors (SNSPDs) have been investigated since their first demonstration in 2001, the advantages gained by building arrays of multiple SNSPDs may be even more unique among single photon detector technologies. First, the simplicity and nanoscale dimensions of these detectors make it possible to easily operate multiple elements and to closely space these elements such that the active area of an array is essentially identical to that of a single element. This ability to eliminate seam-loss between elements, as well as the performance advantages gained by using multiple smaller elements, makes the multi-element approach an attractive way to increase the general detector performance (detection efficiency and maximum counting rate) as well as to provide new capabilities (photon-number, spatial, and spectral resolution). Additionally, in contrast to semiconductor-based single-photon detectors, SNSPDs have a negligible probability of spontaneously emitting photons during the detection process, eliminating a potential source of crosstalk between array elements. However, the SNSPD can be susceptible to other forms of crosstalk, such as thermal or electromagnetic interactions between elements, so it was important to investigate the operation and limitations of multi-element SNSPDs. This thesis will introduce the concept of a multi-element SNSPD with a continuous active area and will investigate its performance advantages, its potential drawbacks and finally its application to intensity correlation measurements.
منابع مشابه
1.25-Gbit/s photon-counting optical communications using a two- element superconducting nanowire single photon detector
The sensitivity of a high-rate photon-counting optical communications link depends on the performance of the photon counter used to detect the optical signal. In this paper, we focus on ways to reduce the effect of blocking, which is loss due to time periods in which the photon counter is inactive following a preceding detection event. This blocking loss can be reduced by using an array of phot...
متن کاملEight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture.
Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for larger signal amplification, we designed a multi-stage, successive-avalanche architecture which used ...
متن کاملSingle-photon detectors based on ultranarrow superconducting nanowires.
We report efficient single-photon detection (η = 20% at 1550 nm wavelength) with ultranarrow (20 and 30 nm wide) superconducting nanowires, which were shown to be more robust to constrictions and more responsive to 1550 nm wavelength photons than standard superconducting nanowire single-photon detectors, based on 90 nm wide nanowires. We also improved our understanding of the physics of superco...
متن کاملProperties of Cascade Switch Superconducting Nanowire Single Photon Detectors
Superconducting nanowire single photon detectors have been realized using an innovative photon induced cascade switch of parallel nanowires. We demonstrate that this configuration allows, at the same time, a fast response and a large active area, with the additional advantage of signal pulses with a larger signal to noise ratio. These improvements are obtained maintaining the good quantum effic...
متن کاملTiming performance of 30-nm-wide superconducting nanowire avalanche photodetectors
We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching superconducting single-photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub-35-ps FWHM Gaussian jitter similar to standard 100-nm-wide superconducting nanowire single-photon detectors. At lower values ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009